Bitcoin Core Fuzz Coverage Report for wallet_tx_can_be_bumped

Coverage Report

Created: 2025-11-19 11:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/Users/brunogarcia/projects/bitcoin-core-dev/src/netaddress.cpp
Line
Count
Source
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-present The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <netaddress.h>
7
8
#include <crypto/common.h>
9
#include <crypto/sha3.h>
10
#include <hash.h>
11
#include <prevector.h>
12
#include <tinyformat.h>
13
#include <util/strencodings.h>
14
#include <util/string.h>
15
16
#include <algorithm>
17
#include <array>
18
#include <cstdint>
19
#include <ios>
20
#include <iterator>
21
#include <string_view>
22
#include <tuple>
23
24
using util::ContainsNoNUL;
25
using util::HasPrefix;
26
27
CNetAddr::BIP155Network CNetAddr::GetBIP155Network() const
28
0
{
29
0
    switch (m_net) {
30
0
    case NET_IPV4:
31
0
        return BIP155Network::IPV4;
32
0
    case NET_IPV6:
33
0
        return BIP155Network::IPV6;
34
0
    case NET_ONION:
35
0
        return BIP155Network::TORV3;
36
0
    case NET_I2P:
37
0
        return BIP155Network::I2P;
38
0
    case NET_CJDNS:
39
0
        return BIP155Network::CJDNS;
40
0
    case NET_INTERNAL:   // should have been handled before calling this function
41
0
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
42
0
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
43
0
        assert(false);
44
0
    } // no default case, so the compiler can warn about missing cases
45
46
0
    assert(false);
47
0
}
48
49
bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
50
0
{
51
0
    switch (possible_bip155_net) {
52
0
    case BIP155Network::IPV4:
53
0
        if (address_size == ADDR_IPV4_SIZE) {
54
0
            m_net = NET_IPV4;
55
0
            return true;
56
0
        }
57
0
        throw std::ios_base::failure(
58
0
            strprintf("BIP155 IPv4 address with length %u (should be %u)", address_size,
Line
Count
Source
1172
0
#define strprintf tfm::format
59
0
                      ADDR_IPV4_SIZE));
60
0
    case BIP155Network::IPV6:
61
0
        if (address_size == ADDR_IPV6_SIZE) {
62
0
            m_net = NET_IPV6;
63
0
            return true;
64
0
        }
65
0
        throw std::ios_base::failure(
66
0
            strprintf("BIP155 IPv6 address with length %u (should be %u)", address_size,
Line
Count
Source
1172
0
#define strprintf tfm::format
67
0
                      ADDR_IPV6_SIZE));
68
0
    case BIP155Network::TORV3:
69
0
        if (address_size == ADDR_TORV3_SIZE) {
70
0
            m_net = NET_ONION;
71
0
            return true;
72
0
        }
73
0
        throw std::ios_base::failure(
74
0
            strprintf("BIP155 TORv3 address with length %u (should be %u)", address_size,
Line
Count
Source
1172
0
#define strprintf tfm::format
75
0
                      ADDR_TORV3_SIZE));
76
0
    case BIP155Network::I2P:
77
0
        if (address_size == ADDR_I2P_SIZE) {
78
0
            m_net = NET_I2P;
79
0
            return true;
80
0
        }
81
0
        throw std::ios_base::failure(
82
0
            strprintf("BIP155 I2P address with length %u (should be %u)", address_size,
Line
Count
Source
1172
0
#define strprintf tfm::format
83
0
                      ADDR_I2P_SIZE));
84
0
    case BIP155Network::CJDNS:
85
0
        if (address_size == ADDR_CJDNS_SIZE) {
86
0
            m_net = NET_CJDNS;
87
0
            return true;
88
0
        }
89
0
        throw std::ios_base::failure(
90
0
            strprintf("BIP155 CJDNS address with length %u (should be %u)", address_size,
Line
Count
Source
1172
0
#define strprintf tfm::format
91
0
                      ADDR_CJDNS_SIZE));
92
0
    }
93
94
    // Don't throw on addresses with unknown network ids (maybe from the future).
95
    // Instead silently drop them and have the unserialization code consume
96
    // subsequent ones which may be known to us.
97
0
    return false;
98
0
}
99
100
/**
101
 * Construct an unspecified IPv6 network address (::/128).
102
 *
103
 * @note This address is considered invalid by CNetAddr::IsValid()
104
 */
105
0
CNetAddr::CNetAddr() = default;
106
107
void CNetAddr::SetIP(const CNetAddr& ipIn)
108
0
{
109
    // Size check.
110
0
    switch (ipIn.m_net) {
111
0
    case NET_IPV4:
112
0
        assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
113
0
        break;
114
0
    case NET_IPV6:
115
0
        assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
116
0
        break;
117
0
    case NET_ONION:
118
0
        assert(ipIn.m_addr.size() == ADDR_TORV3_SIZE);
119
0
        break;
120
0
    case NET_I2P:
121
0
        assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
122
0
        break;
123
0
    case NET_CJDNS:
124
0
        assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE);
125
0
        break;
126
0
    case NET_INTERNAL:
127
0
        assert(ipIn.m_addr.size() == ADDR_INTERNAL_SIZE);
128
0
        break;
129
0
    case NET_UNROUTABLE:
130
0
    case NET_MAX:
131
0
        assert(false);
132
0
    } // no default case, so the compiler can warn about missing cases
133
134
0
    m_net = ipIn.m_net;
135
0
    m_addr = ipIn.m_addr;
136
0
}
137
138
void CNetAddr::SetLegacyIPv6(std::span<const uint8_t> ipv6)
139
0
{
140
0
    assert(ipv6.size() == ADDR_IPV6_SIZE);
141
142
0
    size_t skip{0};
143
144
0
    if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
145
        // IPv4-in-IPv6
146
0
        m_net = NET_IPV4;
147
0
        skip = sizeof(IPV4_IN_IPV6_PREFIX);
148
0
    } else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
149
        // TORv2-in-IPv6 (unsupported). Unserialize as !IsValid(), thus ignoring them.
150
        // Mimic a default-constructed CNetAddr object which is !IsValid() and thus
151
        // will not be gossiped, but continue reading next addresses from the stream.
152
0
        m_net = NET_IPV6;
153
0
        m_addr.assign(ADDR_IPV6_SIZE, 0x0);
154
0
        return;
155
0
    } else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
156
        // Internal-in-IPv6
157
0
        m_net = NET_INTERNAL;
158
0
        skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
159
0
    } else {
160
        // IPv6
161
0
        m_net = NET_IPV6;
162
0
    }
163
164
0
    m_addr.assign(ipv6.begin() + skip, ipv6.end());
165
0
}
166
167
/**
168
 * Create an "internal" address that represents a name or FQDN. AddrMan uses
169
 * these fake addresses to keep track of which DNS seeds were used.
170
 * @returns Whether or not the operation was successful.
171
 * @see NET_INTERNAL, INTERNAL_IN_IPV6_PREFIX, CNetAddr::IsInternal(), CNetAddr::IsRFC4193()
172
 */
173
bool CNetAddr::SetInternal(const std::string &name)
174
0
{
175
0
    if (name.empty()) {
176
0
        return false;
177
0
    }
178
0
    m_net = NET_INTERNAL;
179
0
    unsigned char hash[32] = {};
180
0
    CSHA256().Write((const unsigned char*)name.data(), name.size()).Finalize(hash);
181
0
    m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
182
0
    return true;
183
0
}
184
185
namespace torv3 {
186
// https://gitlab.torproject.org/tpo/core/torspec/-/tree/main/spec/rend-spec
187
static constexpr size_t CHECKSUM_LEN = 2;
188
static const unsigned char VERSION[] = {3};
189
static constexpr size_t TOTAL_LEN = ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION);
190
191
static void Checksum(std::span<const uint8_t> addr_pubkey, uint8_t (&checksum)[CHECKSUM_LEN])
192
0
{
193
    // TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
194
0
    static const unsigned char prefix[] = ".onion checksum";
195
0
    static constexpr size_t prefix_len = 15;
196
197
0
    SHA3_256 hasher;
198
199
0
    hasher.Write(std::span{prefix}.first(prefix_len));
200
0
    hasher.Write(addr_pubkey);
201
0
    hasher.Write(VERSION);
202
203
0
    uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];
204
205
0
    hasher.Finalize(checksum_full);
206
207
0
    memcpy(checksum, checksum_full, sizeof(checksum));
208
0
}
209
210
}; // namespace torv3
211
212
bool CNetAddr::SetSpecial(std::string_view addr)
213
0
{
214
0
    if (!ContainsNoNUL(addr)) {
215
0
        return false;
216
0
    }
217
218
0
    if (SetTor(addr)) {
219
0
        return true;
220
0
    }
221
222
0
    if (SetI2P(addr)) {
223
0
        return true;
224
0
    }
225
226
0
    return false;
227
0
}
228
229
bool CNetAddr::SetTor(std::string_view addr)
230
0
{
231
0
    if (!addr.ends_with(".onion")) return false;
232
0
    addr.remove_suffix(6);
233
0
    auto input = DecodeBase32(addr);
234
235
0
    if (!input) {
236
0
        return false;
237
0
    }
238
239
0
    if (input->size() == torv3::TOTAL_LEN) {
240
0
        std::span<const uint8_t> input_pubkey{input->data(), ADDR_TORV3_SIZE};
241
0
        std::span<const uint8_t> input_checksum{input->data() + ADDR_TORV3_SIZE, torv3::CHECKSUM_LEN};
242
0
        std::span<const uint8_t> input_version{input->data() + ADDR_TORV3_SIZE + torv3::CHECKSUM_LEN, sizeof(torv3::VERSION)};
243
244
0
        if (!std::ranges::equal(input_version, torv3::VERSION)) {
245
0
            return false;
246
0
        }
247
248
0
        uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
249
0
        torv3::Checksum(input_pubkey, calculated_checksum);
250
251
0
        if (!std::ranges::equal(input_checksum, calculated_checksum)) {
252
0
            return false;
253
0
        }
254
255
0
        m_net = NET_ONION;
256
0
        m_addr.assign(input_pubkey.begin(), input_pubkey.end());
257
0
        return true;
258
0
    }
259
260
0
    return false;
261
0
}
262
263
bool CNetAddr::SetI2P(std::string_view addr)
264
0
{
265
    // I2P addresses that we support consist of 52 base32 characters + ".b32.i2p".
266
0
    static constexpr size_t b32_len{52};
267
0
    static const char* suffix{".b32.i2p"};
268
0
    static constexpr size_t suffix_len{8};
269
270
0
    if (addr.size() != b32_len + suffix_len || ToLower(addr.substr(b32_len)) != suffix) {
271
0
        return false;
272
0
    }
273
274
    // Remove the ".b32.i2p" suffix and pad to a multiple of 8 chars, so DecodeBase32()
275
    // can decode it.
276
0
    const std::string b32_padded{tfm::format("%s====", addr.substr(0, b32_len))};
277
278
0
    auto address_bytes = DecodeBase32(b32_padded);
279
280
0
    if (!address_bytes || address_bytes->size() != ADDR_I2P_SIZE) {
281
0
        return false;
282
0
    }
283
284
0
    m_net = NET_I2P;
285
0
    m_addr.assign(address_bytes->begin(), address_bytes->end());
286
287
0
    return true;
288
0
}
289
290
CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
291
0
{
292
0
    m_net = NET_IPV4;
293
0
    const uint8_t* ptr = reinterpret_cast<const uint8_t*>(&ipv4Addr);
294
0
    m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
295
0
}
296
297
CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr, const uint32_t scope)
298
0
{
299
0
    SetLegacyIPv6({reinterpret_cast<const uint8_t*>(&ipv6Addr), sizeof(ipv6Addr)});
300
0
    m_scope_id = scope;
301
0
}
302
303
bool CNetAddr::IsBindAny() const
304
0
{
305
0
    if (!IsIPv4() && !IsIPv6()) {
306
0
        return false;
307
0
    }
308
0
    return std::all_of(m_addr.begin(), m_addr.end(), [](uint8_t b) { return b == 0; });
309
0
}
310
311
bool CNetAddr::IsRFC1918() const
312
0
{
313
0
    return IsIPv4() && (
314
0
        m_addr[0] == 10 ||
315
0
        (m_addr[0] == 192 && m_addr[1] == 168) ||
316
0
        (m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31));
317
0
}
318
319
bool CNetAddr::IsRFC2544() const
320
0
{
321
0
    return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19);
322
0
}
323
324
bool CNetAddr::IsRFC3927() const
325
0
{
326
0
    return IsIPv4() && HasPrefix(m_addr, std::array<uint8_t, 2>{169, 254});
327
0
}
328
329
bool CNetAddr::IsRFC6598() const
330
0
{
331
0
    return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127;
332
0
}
333
334
bool CNetAddr::IsRFC5737() const
335
0
{
336
0
    return IsIPv4() && (HasPrefix(m_addr, std::array<uint8_t, 3>{192, 0, 2}) ||
337
0
                        HasPrefix(m_addr, std::array<uint8_t, 3>{198, 51, 100}) ||
338
0
                        HasPrefix(m_addr, std::array<uint8_t, 3>{203, 0, 113}));
339
0
}
340
341
bool CNetAddr::IsRFC3849() const
342
0
{
343
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x0D, 0xB8});
344
0
}
345
346
bool CNetAddr::IsRFC3964() const
347
0
{
348
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 2>{0x20, 0x02});
349
0
}
350
351
bool CNetAddr::IsRFC6052() const
352
0
{
353
0
    return IsIPv6() &&
354
0
           HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x64, 0xFF, 0x9B, 0x00, 0x00,
355
0
                                                     0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
356
0
}
357
358
bool CNetAddr::IsRFC4380() const
359
0
{
360
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x00, 0x00});
361
0
}
362
363
bool CNetAddr::IsRFC4862() const
364
0
{
365
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 8>{0xFE, 0x80, 0x00, 0x00,
366
0
                                                                0x00, 0x00, 0x00, 0x00});
367
0
}
368
369
bool CNetAddr::IsRFC4193() const
370
0
{
371
0
    return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC;
372
0
}
373
374
bool CNetAddr::IsRFC6145() const
375
0
{
376
0
    return IsIPv6() &&
377
0
           HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
378
0
                                                     0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00});
379
0
}
380
381
bool CNetAddr::IsRFC4843() const
382
0
{
383
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
384
0
           (m_addr[3] & 0xF0) == 0x10;
385
0
}
386
387
bool CNetAddr::IsRFC7343() const
388
0
{
389
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
390
0
           (m_addr[3] & 0xF0) == 0x20;
391
0
}
392
393
bool CNetAddr::IsHeNet() const
394
0
{
395
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x04, 0x70});
396
0
}
397
398
bool CNetAddr::IsLocal() const
399
0
{
400
    // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
401
0
    if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) {
402
0
        return true;
403
0
    }
404
405
    // IPv6 loopback (::1/128)
406
0
    static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
407
0
    if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) {
408
0
        return true;
409
0
    }
410
411
0
    return false;
412
0
}
413
414
/**
415
 * @returns Whether or not this network address is a valid address that @a could
416
 *          be used to refer to an actual host.
417
 *
418
 * @note A valid address may or may not be publicly routable on the global
419
 *       internet. As in, the set of valid addresses is a superset of the set of
420
 *       publicly routable addresses.
421
 *
422
 * @see CNetAddr::IsRoutable()
423
 */
424
bool CNetAddr::IsValid() const
425
0
{
426
    // unspecified IPv6 address (::/128)
427
0
    unsigned char ipNone6[16] = {};
428
0
    if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) {
429
0
        return false;
430
0
    }
431
432
0
    if (IsCJDNS() && !HasCJDNSPrefix()) {
433
0
        return false;
434
0
    }
435
436
    // documentation IPv6 address
437
0
    if (IsRFC3849())
438
0
        return false;
439
440
0
    if (IsInternal())
441
0
        return false;
442
443
0
    if (IsIPv4()) {
444
0
        const uint32_t addr = ReadBE32(m_addr.data());
445
0
        if (addr == INADDR_ANY || addr == INADDR_NONE) {
446
0
            return false;
447
0
        }
448
0
    }
449
450
0
    return true;
451
0
}
452
453
/**
454
 * @returns Whether or not this network address is publicly routable on the
455
 *          global internet.
456
 *
457
 * @note A routable address is always valid. As in, the set of routable addresses
458
 *       is a subset of the set of valid addresses.
459
 *
460
 * @see CNetAddr::IsValid()
461
 */
462
bool CNetAddr::IsRoutable() const
463
0
{
464
0
    return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || IsRFC4193() || IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal());
465
0
}
466
467
/**
468
 * @returns Whether or not this is a dummy address that represents a name.
469
 *
470
 * @see CNetAddr::SetInternal(const std::string &)
471
 */
472
bool CNetAddr::IsInternal() const
473
0
{
474
0
   return m_net == NET_INTERNAL;
475
0
}
476
477
bool CNetAddr::IsAddrV1Compatible() const
478
0
{
479
0
    switch (m_net) {
480
0
    case NET_IPV4:
481
0
    case NET_IPV6:
482
0
    case NET_INTERNAL:
483
0
        return true;
484
0
    case NET_ONION:
485
0
    case NET_I2P:
486
0
    case NET_CJDNS:
487
0
        return false;
488
0
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
489
0
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
490
0
        assert(false);
491
0
    } // no default case, so the compiler can warn about missing cases
492
493
0
    assert(false);
494
0
}
495
496
enum Network CNetAddr::GetNetwork() const
497
0
{
498
0
    if (IsInternal())
499
0
        return NET_INTERNAL;
500
501
0
    if (!IsRoutable())
502
0
        return NET_UNROUTABLE;
503
504
0
    return m_net;
505
0
}
506
507
static std::string IPv4ToString(std::span<const uint8_t> a)
508
0
{
509
0
    return strprintf("%u.%u.%u.%u", a[0], a[1], a[2], a[3]);
Line
Count
Source
1172
0
#define strprintf tfm::format
510
0
}
511
512
// Return an IPv6 address text representation with zero compression as described in RFC 5952
513
// ("A Recommendation for IPv6 Address Text Representation").
514
static std::string IPv6ToString(std::span<const uint8_t> a, uint32_t scope_id)
515
0
{
516
0
    assert(a.size() == ADDR_IPV6_SIZE);
517
0
    const std::array groups{
518
0
        ReadBE16(&a[0]),
519
0
        ReadBE16(&a[2]),
520
0
        ReadBE16(&a[4]),
521
0
        ReadBE16(&a[6]),
522
0
        ReadBE16(&a[8]),
523
0
        ReadBE16(&a[10]),
524
0
        ReadBE16(&a[12]),
525
0
        ReadBE16(&a[14]),
526
0
    };
527
528
    // The zero compression implementation is inspired by Rust's std::net::Ipv6Addr, see
529
    // https://github.com/rust-lang/rust/blob/cc4103089f40a163f6d143f06359cba7043da29b/library/std/src/net/ip.rs#L1635-L1683
530
0
    struct ZeroSpan {
531
0
        size_t start_index{0};
532
0
        size_t len{0};
533
0
    };
534
535
    // Find longest sequence of consecutive all-zero fields. Use first zero sequence if two or more
536
    // zero sequences of equal length are found.
537
0
    ZeroSpan longest, current;
538
0
    for (size_t i{0}; i < groups.size(); ++i) {
539
0
        if (groups[i] != 0) {
540
0
            current = {i + 1, 0};
541
0
            continue;
542
0
        }
543
0
        current.len += 1;
544
0
        if (current.len > longest.len) {
545
0
            longest = current;
546
0
        }
547
0
    }
548
549
0
    std::string r;
550
0
    r.reserve(39);
551
0
    for (size_t i{0}; i < groups.size(); ++i) {
552
        // Replace the longest sequence of consecutive all-zero fields with two colons ("::").
553
0
        if (longest.len >= 2 && i >= longest.start_index && i < longest.start_index + longest.len) {
554
0
            if (i == longest.start_index) {
555
0
                r += "::";
556
0
            }
557
0
            continue;
558
0
        }
559
0
        r += strprintf("%s%x", ((!r.empty() && r.back() != ':') ? ":" : ""), groups[i]);
Line
Count
Source
1172
0
#define strprintf tfm::format
560
0
    }
561
562
0
    if (scope_id != 0) {
563
0
        r += strprintf("%%%u", scope_id);
Line
Count
Source
1172
0
#define strprintf tfm::format
564
0
    }
565
566
0
    return r;
567
0
}
568
569
std::string OnionToString(std::span<const uint8_t> addr)
570
0
{
571
0
    uint8_t checksum[torv3::CHECKSUM_LEN];
572
0
    torv3::Checksum(addr, checksum);
573
    // TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion"
574
0
    prevector<torv3::TOTAL_LEN, uint8_t> address{addr.begin(), addr.end()};
575
0
    address.insert(address.end(), checksum, checksum + torv3::CHECKSUM_LEN);
576
0
    address.insert(address.end(), torv3::VERSION, torv3::VERSION + sizeof(torv3::VERSION));
577
0
    return EncodeBase32(address) + ".onion";
578
0
}
579
580
std::string CNetAddr::ToStringAddr() const
581
0
{
582
0
    switch (m_net) {
583
0
    case NET_IPV4:
584
0
        return IPv4ToString(m_addr);
585
0
    case NET_IPV6:
586
0
        return IPv6ToString(m_addr, m_scope_id);
587
0
    case NET_ONION:
588
0
        return OnionToString(m_addr);
589
0
    case NET_I2P:
590
0
        return EncodeBase32(m_addr, false /* don't pad with = */) + ".b32.i2p";
591
0
    case NET_CJDNS:
592
0
        return IPv6ToString(m_addr, 0);
593
0
    case NET_INTERNAL:
594
0
        return EncodeBase32(m_addr) + ".internal";
595
0
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
596
0
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
597
0
        assert(false);
598
0
    } // no default case, so the compiler can warn about missing cases
599
600
0
    assert(false);
601
0
}
602
603
bool operator==(const CNetAddr& a, const CNetAddr& b)
604
0
{
605
0
    return a.m_net == b.m_net && a.m_addr == b.m_addr;
606
0
}
607
608
bool operator<(const CNetAddr& a, const CNetAddr& b)
609
0
{
610
0
    return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
611
0
}
612
613
/**
614
 * Try to get our IPv4 address.
615
 *
616
 * @param[out] pipv4Addr The in_addr struct to which to copy.
617
 *
618
 * @returns Whether or not the operation was successful, in particular, whether
619
 *          or not our address was an IPv4 address.
620
 *
621
 * @see CNetAddr::IsIPv4()
622
 */
623
bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
624
0
{
625
0
    if (!IsIPv4())
626
0
        return false;
627
0
    assert(sizeof(*pipv4Addr) == m_addr.size());
628
0
    memcpy(pipv4Addr, m_addr.data(), m_addr.size());
629
0
    return true;
630
0
}
631
632
/**
633
 * Try to get our IPv6 (or CJDNS) address.
634
 *
635
 * @param[out] pipv6Addr The in6_addr struct to which to copy.
636
 *
637
 * @returns Whether or not the operation was successful, in particular, whether
638
 *          or not our address was an IPv6 address.
639
 *
640
 * @see CNetAddr::IsIPv6()
641
 */
642
bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
643
0
{
644
0
    if (!IsIPv6() && !IsCJDNS()) {
645
0
        return false;
646
0
    }
647
0
    assert(sizeof(*pipv6Addr) == m_addr.size());
648
0
    memcpy(pipv6Addr, m_addr.data(), m_addr.size());
649
0
    return true;
650
0
}
651
652
bool CNetAddr::HasLinkedIPv4() const
653
0
{
654
0
    return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() || IsRFC3964() || IsRFC4380());
655
0
}
656
657
uint32_t CNetAddr::GetLinkedIPv4() const
658
0
{
659
0
    if (IsIPv4()) {
660
0
        return ReadBE32(m_addr.data());
661
0
    } else if (IsRFC6052() || IsRFC6145()) {
662
        // mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4 bytes of the address
663
0
        return ReadBE32(std::span{m_addr}.last(ADDR_IPV4_SIZE).data());
664
0
    } else if (IsRFC3964()) {
665
        // 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
666
0
        return ReadBE32(std::span{m_addr}.subspan(2, ADDR_IPV4_SIZE).data());
667
0
    } else if (IsRFC4380()) {
668
        // Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the address, but bitflipped
669
0
        return ~ReadBE32(std::span{m_addr}.last(ADDR_IPV4_SIZE).data());
670
0
    }
671
0
    assert(false);
672
0
}
673
674
Network CNetAddr::GetNetClass() const
675
0
{
676
    // Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers expect that.
677
678
    // Check for "internal" first because such addresses are also !IsRoutable()
679
    // and we don't want to return NET_UNROUTABLE in that case.
680
0
    if (IsInternal()) {
681
0
        return NET_INTERNAL;
682
0
    }
683
0
    if (!IsRoutable()) {
684
0
        return NET_UNROUTABLE;
685
0
    }
686
0
    if (HasLinkedIPv4()) {
687
0
        return NET_IPV4;
688
0
    }
689
0
    return m_net;
690
0
}
691
692
std::vector<unsigned char> CNetAddr::GetAddrBytes() const
693
0
{
694
0
    if (IsAddrV1Compatible()) {
695
0
        uint8_t serialized[V1_SERIALIZATION_SIZE];
696
0
        SerializeV1Array(serialized);
697
0
        return {std::begin(serialized), std::end(serialized)};
698
0
    }
699
0
    return std::vector<unsigned char>(m_addr.begin(), m_addr.end());
700
0
}
701
702
// private extensions to enum Network, only returned by GetExtNetwork,
703
// and only used in GetReachabilityFrom
704
static const int NET_TEREDO = NET_MAX;
705
int static GetExtNetwork(const CNetAddr& addr)
706
0
{
707
0
    if (addr.IsRFC4380())
708
0
        return NET_TEREDO;
709
0
    return addr.GetNetwork();
710
0
}
711
712
/** Calculates a metric for how reachable (*this) is from a given partner */
713
int CNetAddr::GetReachabilityFrom(const CNetAddr& paddrPartner) const
714
0
{
715
0
    enum Reachability {
716
0
        REACH_UNREACHABLE,
717
0
        REACH_DEFAULT,
718
0
        REACH_TEREDO,
719
0
        REACH_IPV6_WEAK,
720
0
        REACH_IPV4,
721
0
        REACH_IPV6_STRONG,
722
0
        REACH_PRIVATE
723
0
    };
724
725
0
    if (!IsRoutable() || IsInternal())
726
0
        return REACH_UNREACHABLE;
727
728
0
    int ourNet = GetExtNetwork(*this);
729
0
    int theirNet = GetExtNetwork(paddrPartner);
730
0
    bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
731
732
0
    switch(theirNet) {
733
0
    case NET_IPV4:
734
0
        switch(ourNet) {
735
0
        default:       return REACH_DEFAULT;
736
0
        case NET_IPV4: return REACH_IPV4;
737
0
        }
738
0
    case NET_IPV6:
739
0
        switch(ourNet) {
740
0
        default:         return REACH_DEFAULT;
741
0
        case NET_TEREDO: return REACH_TEREDO;
742
0
        case NET_IPV4:   return REACH_IPV4;
743
0
        case NET_IPV6:   return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
744
0
        }
745
0
    case NET_ONION:
746
0
        switch(ourNet) {
747
0
        default:         return REACH_DEFAULT;
748
0
        case NET_IPV4:   return REACH_IPV4; // Tor users can connect to IPv4 as well
749
0
        case NET_ONION:    return REACH_PRIVATE;
750
0
        }
751
0
    case NET_I2P:
752
0
        switch (ourNet) {
753
0
        case NET_I2P: return REACH_PRIVATE;
754
0
        default: return REACH_DEFAULT;
755
0
        }
756
0
    case NET_CJDNS:
757
0
        switch (ourNet) {
758
0
        case NET_CJDNS: return REACH_PRIVATE;
759
0
        default: return REACH_DEFAULT;
760
0
        }
761
0
    case NET_TEREDO:
762
0
        switch(ourNet) {
763
0
        default:          return REACH_DEFAULT;
764
0
        case NET_TEREDO:  return REACH_TEREDO;
765
0
        case NET_IPV6:    return REACH_IPV6_WEAK;
766
0
        case NET_IPV4:    return REACH_IPV4;
767
0
        }
768
0
    case NET_UNROUTABLE:
769
0
    default:
770
0
        switch(ourNet) {
771
0
        default:          return REACH_DEFAULT;
772
0
        case NET_TEREDO:  return REACH_TEREDO;
773
0
        case NET_IPV6:    return REACH_IPV6_WEAK;
774
0
        case NET_IPV4:    return REACH_IPV4;
775
0
        case NET_ONION:     return REACH_PRIVATE; // either from Tor, or don't care about our address
776
0
        }
777
0
    }
778
0
}
779
780
0
CService::CService() : port(0)
781
0
{
782
0
}
783
784
0
CService::CService(const CNetAddr& cip, uint16_t portIn) : CNetAddr(cip), port(portIn)
785
0
{
786
0
}
787
788
0
CService::CService(const struct in_addr& ipv4Addr, uint16_t portIn) : CNetAddr(ipv4Addr), port(portIn)
789
0
{
790
0
}
791
792
0
CService::CService(const struct in6_addr& ipv6Addr, uint16_t portIn) : CNetAddr(ipv6Addr), port(portIn)
793
0
{
794
0
}
795
796
0
CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
797
0
{
798
0
    assert(addr.sin_family == AF_INET);
799
0
}
800
801
0
CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port))
802
0
{
803
0
   assert(addr.sin6_family == AF_INET6);
804
0
}
805
806
bool CService::SetSockAddr(const struct sockaddr *paddr, socklen_t addrlen)
807
0
{
808
0
    switch (paddr->sa_family) {
809
0
    case AF_INET:
810
0
        if (addrlen != sizeof(struct sockaddr_in)) return false;
811
0
        *this = CService(*(const struct sockaddr_in*)paddr);
812
0
        return true;
813
0
    case AF_INET6:
814
0
        if (addrlen != sizeof(struct sockaddr_in6)) return false;
815
0
        *this = CService(*(const struct sockaddr_in6*)paddr);
816
0
        return true;
817
0
    default:
818
0
        return false;
819
0
    }
820
0
}
821
822
sa_family_t CService::GetSAFamily() const
823
0
{
824
0
    switch (m_net) {
825
0
    case NET_IPV4:
826
0
        return AF_INET;
827
0
    case NET_IPV6:
828
0
    case NET_CJDNS:
829
0
        return AF_INET6;
830
0
    default:
831
0
        return AF_UNSPEC;
832
0
    }
833
0
}
834
835
uint16_t CService::GetPort() const
836
0
{
837
0
    return port;
838
0
}
839
840
bool operator==(const CService& a, const CService& b)
841
0
{
842
0
    return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port == b.port;
843
0
}
844
845
bool operator<(const CService& a, const CService& b)
846
0
{
847
0
    return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) || (static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port < b.port);
848
0
}
849
850
/**
851
 * Obtain the IPv4/6 socket address this represents.
852
 *
853
 * @param[out] paddr The obtained socket address.
854
 * @param[in,out] addrlen The size, in bytes, of the address structure pointed
855
 *                        to by paddr. The value that's pointed to by this
856
 *                        parameter might change after calling this function if
857
 *                        the size of the corresponding address structure
858
 *                        changed.
859
 *
860
 * @returns Whether or not the operation was successful.
861
 */
862
bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
863
0
{
864
0
    if (IsIPv4()) {
865
0
        if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
866
0
            return false;
867
0
        *addrlen = sizeof(struct sockaddr_in);
868
0
        struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
869
0
        memset(paddrin, 0, *addrlen);
870
0
        if (!GetInAddr(&paddrin->sin_addr))
871
0
            return false;
872
0
        paddrin->sin_family = AF_INET;
873
0
        paddrin->sin_port = htons(port);
874
0
        return true;
875
0
    }
876
0
    if (IsIPv6() || IsCJDNS()) {
877
0
        if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
878
0
            return false;
879
0
        *addrlen = sizeof(struct sockaddr_in6);
880
0
        struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
881
0
        memset(paddrin6, 0, *addrlen);
882
0
        if (!GetIn6Addr(&paddrin6->sin6_addr))
883
0
            return false;
884
0
        paddrin6->sin6_scope_id = m_scope_id;
885
0
        paddrin6->sin6_family = AF_INET6;
886
0
        paddrin6->sin6_port = htons(port);
887
0
        return true;
888
0
    }
889
0
    return false;
890
0
}
891
892
/**
893
 * @returns An identifier unique to this service's address and port number.
894
 */
895
std::vector<unsigned char> CService::GetKey() const
896
0
{
897
0
    auto key = GetAddrBytes();
898
0
    key.push_back(port / 0x100); // most significant byte of our port
899
0
    key.push_back(port & 0x0FF); // least significant byte of our port
900
0
    return key;
901
0
}
902
903
std::string CService::ToStringAddrPort() const
904
0
{
905
0
    const auto port_str = strprintf("%u", port);
Line
Count
Source
1172
0
#define strprintf tfm::format
906
907
0
    if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) {
908
0
        return ToStringAddr() + ":" + port_str;
909
0
    } else {
910
0
        return "[" + ToStringAddr() + "]:" + port_str;
911
0
    }
912
0
}
913
914
CSubNet::CSubNet():
915
0
    valid(false)
916
0
{
917
0
    memset(netmask, 0, sizeof(netmask));
918
0
}
919
920
0
CSubNet::CSubNet(const CNetAddr& addr, uint8_t mask) : CSubNet()
921
0
{
922
0
    valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
923
0
            (addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
924
0
    if (!valid) {
925
0
        return;
926
0
    }
927
928
0
    assert(mask <= sizeof(netmask) * 8);
929
930
0
    network = addr;
931
932
0
    uint8_t n = mask;
933
0
    for (size_t i = 0; i < network.m_addr.size(); ++i) {
934
0
        const uint8_t bits = n < 8 ? n : 8;
935
0
        netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits)); // Set first bits.
936
0
        network.m_addr[i] &= netmask[i]; // Normalize network according to netmask.
937
0
        n -= bits;
938
0
    }
939
0
}
Unexecuted instantiation: CSubNet::CSubNet(CNetAddr const&, unsigned char)
Unexecuted instantiation: CSubNet::CSubNet(CNetAddr const&, unsigned char)
940
941
/**
942
 * @returns The number of 1-bits in the prefix of the specified subnet mask. If
943
 *          the specified subnet mask is not a valid one, -1.
944
 */
945
static inline int NetmaskBits(uint8_t x)
946
0
{
947
0
    switch(x) {
948
0
    case 0x00: return 0;
949
0
    case 0x80: return 1;
950
0
    case 0xc0: return 2;
951
0
    case 0xe0: return 3;
952
0
    case 0xf0: return 4;
953
0
    case 0xf8: return 5;
954
0
    case 0xfc: return 6;
955
0
    case 0xfe: return 7;
956
0
    case 0xff: return 8;
957
0
    default: return -1;
958
0
    }
959
0
}
960
961
0
CSubNet::CSubNet(const CNetAddr& addr, const CNetAddr& mask) : CSubNet()
962
0
{
963
0
    valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
964
0
    if (!valid) {
965
0
        return;
966
0
    }
967
    // Check if `mask` contains 1-bits after 0-bits (which is an invalid netmask).
968
0
    bool zeros_found = false;
969
0
    for (auto b : mask.m_addr) {
970
0
        const int num_bits = NetmaskBits(b);
971
0
        if (num_bits == -1 || (zeros_found && num_bits != 0)) {
972
0
            valid = false;
973
0
            return;
974
0
        }
975
0
        if (num_bits < 8) {
976
0
            zeros_found = true;
977
0
        }
978
0
    }
979
980
0
    assert(mask.m_addr.size() <= sizeof(netmask));
981
982
0
    memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());
983
984
0
    network = addr;
985
986
    // Normalize network according to netmask
987
0
    for (size_t x = 0; x < network.m_addr.size(); ++x) {
988
0
        network.m_addr[x] &= netmask[x];
989
0
    }
990
0
}
Unexecuted instantiation: CSubNet::CSubNet(CNetAddr const&, CNetAddr const&)
Unexecuted instantiation: CSubNet::CSubNet(CNetAddr const&, CNetAddr const&)
991
992
0
CSubNet::CSubNet(const CNetAddr& addr) : CSubNet()
993
0
{
994
0
    switch (addr.m_net) {
995
0
    case NET_IPV4:
996
0
    case NET_IPV6:
997
0
        valid = true;
998
0
        assert(addr.m_addr.size() <= sizeof(netmask));
999
0
        memset(netmask, 0xFF, addr.m_addr.size());
1000
0
        break;
1001
0
    case NET_ONION:
1002
0
    case NET_I2P:
1003
0
    case NET_CJDNS:
1004
0
        valid = true;
1005
0
        break;
1006
0
    case NET_INTERNAL:
1007
0
    case NET_UNROUTABLE:
1008
0
    case NET_MAX:
1009
0
        return;
1010
0
    }
1011
1012
0
    network = addr;
1013
0
}
Unexecuted instantiation: CSubNet::CSubNet(CNetAddr const&)
Unexecuted instantiation: CSubNet::CSubNet(CNetAddr const&)
1014
1015
/**
1016
 * @returns True if this subnet is valid, the specified address is valid, and
1017
 *          the specified address belongs in this subnet.
1018
 */
1019
bool CSubNet::Match(const CNetAddr &addr) const
1020
0
{
1021
0
    if (!valid || !addr.IsValid() || network.m_net != addr.m_net)
1022
0
        return false;
1023
1024
0
    switch (network.m_net) {
1025
0
    case NET_IPV4:
1026
0
    case NET_IPV6:
1027
0
        break;
1028
0
    case NET_ONION:
1029
0
    case NET_I2P:
1030
0
    case NET_CJDNS:
1031
0
    case NET_INTERNAL:
1032
0
        return addr == network;
1033
0
    case NET_UNROUTABLE:
1034
0
    case NET_MAX:
1035
0
        return false;
1036
0
    }
1037
1038
0
    assert(network.m_addr.size() == addr.m_addr.size());
1039
0
    for (size_t x = 0; x < addr.m_addr.size(); ++x) {
1040
0
        if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
1041
0
            return false;
1042
0
        }
1043
0
    }
1044
0
    return true;
1045
0
}
1046
1047
std::string CSubNet::ToString() const
1048
0
{
1049
0
    std::string suffix;
1050
1051
0
    switch (network.m_net) {
1052
0
    case NET_IPV4:
1053
0
    case NET_IPV6: {
1054
0
        assert(network.m_addr.size() <= sizeof(netmask));
1055
1056
0
        uint8_t cidr = 0;
1057
1058
0
        for (size_t i = 0; i < network.m_addr.size(); ++i) {
1059
0
            if (netmask[i] == 0x00) {
1060
0
                break;
1061
0
            }
1062
0
            cidr += NetmaskBits(netmask[i]);
1063
0
        }
1064
1065
0
        suffix = strprintf("/%u", cidr);
Line
Count
Source
1172
0
#define strprintf tfm::format
1066
0
        break;
1067
0
    }
1068
0
    case NET_ONION:
1069
0
    case NET_I2P:
1070
0
    case NET_CJDNS:
1071
0
    case NET_INTERNAL:
1072
0
    case NET_UNROUTABLE:
1073
0
    case NET_MAX:
1074
0
        break;
1075
0
    }
1076
1077
0
    return network.ToStringAddr() + suffix;
1078
0
}
1079
1080
bool CSubNet::IsValid() const
1081
0
{
1082
0
    return valid;
1083
0
}
1084
1085
bool operator==(const CSubNet& a, const CSubNet& b)
1086
0
{
1087
0
    return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
1088
0
}
1089
1090
bool operator<(const CSubNet& a, const CSubNet& b)
1091
0
{
1092
0
    return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
1093
0
}