Bitcoin Core Fuzz Coverage Report for wallet_tx_can_be_bumped

Coverage Report

Created: 2025-11-19 11:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/Users/brunogarcia/projects/bitcoin-core-dev/src/key.h
Line
Count
Source
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-present The Bitcoin Core developers
3
// Copyright (c) 2017 The Zcash developers
4
// Distributed under the MIT software license, see the accompanying
5
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
6
7
#ifndef BITCOIN_KEY_H
8
#define BITCOIN_KEY_H
9
10
#include <musig.h>
11
#include <pubkey.h>
12
#include <serialize.h>
13
#include <support/allocators/secure.h>
14
#include <uint256.h>
15
16
#include <stdexcept>
17
#include <vector>
18
19
20
/**
21
 * CPrivKey is a serialized private key, with all parameters included
22
 * (SIZE bytes)
23
 */
24
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
25
26
/** Size of ECDH shared secrets. */
27
constexpr static size_t ECDH_SECRET_SIZE = CSHA256::OUTPUT_SIZE;
28
29
// Used to represent ECDH shared secret (ECDH_SECRET_SIZE bytes)
30
using ECDHSecret = std::array<std::byte, ECDH_SECRET_SIZE>;
31
32
class KeyPair;
33
34
/** An encapsulated private key. */
35
class CKey
36
{
37
public:
38
    /**
39
     * secp256k1:
40
     */
41
    static const unsigned int SIZE            = 279;
42
    static const unsigned int COMPRESSED_SIZE = 214;
43
    /**
44
     * see www.keylength.com
45
     * script supports up to 75 for single byte push
46
     */
47
    static_assert(
48
        SIZE >= COMPRESSED_SIZE,
49
        "COMPRESSED_SIZE is larger than SIZE");
50
51
private:
52
    /** Internal data container for private key material. */
53
    using KeyType = std::array<unsigned char, 32>;
54
55
    //! Whether the public key corresponding to this private key is (to be) compressed.
56
    bool fCompressed{false};
57
58
    //! The actual byte data. nullptr for invalid keys.
59
    secure_unique_ptr<KeyType> keydata;
60
61
    //! Check whether the 32-byte array pointed to by vch is valid keydata.
62
    bool static Check(const unsigned char* vch);
63
64
    void MakeKeyData()
65
328k
    {
66
328k
        if (!keydata) keydata = make_secure_unique<KeyType>();
67
328k
    }
68
69
    void ClearKeyData()
70
0
    {
71
0
        keydata.reset();
72
0
    }
73
74
public:
75
158k
    CKey() noexcept = default;
76
0
    CKey(CKey&&) noexcept = default;
77
0
    CKey& operator=(CKey&&) noexcept = default;
78
79
    CKey& operator=(const CKey& other)
80
248k
    {
81
248k
        if (this != &other) {
82
248k
            if (other.keydata) {
83
248k
                MakeKeyData();
84
248k
                *keydata = *other.keydata;
85
248k
            } else {
86
0
                ClearKeyData();
87
0
            }
88
248k
            fCompressed = other.fCompressed;
89
248k
        }
90
248k
        return *this;
91
248k
    }
92
93
169k
    CKey(const CKey& other) { *this = other; }
94
95
    friend bool operator==(const CKey& a, const CKey& b)
96
0
    {
97
0
        return a.fCompressed == b.fCompressed &&
98
0
            a.size() == b.size() &&
99
0
            memcmp(a.data(), b.data(), a.size()) == 0;
100
0
    }
101
102
    //! Initialize using begin and end iterators to byte data.
103
    template <typename T>
104
    void Set(const T pbegin, const T pend, bool fCompressedIn)
105
79.3k
    {
106
79.3k
        if (size_t(pend - pbegin) != std::tuple_size_v<KeyType>) {
107
0
            ClearKeyData();
108
79.3k
        } else if (Check(UCharCast(&pbegin[0]))) {
109
79.3k
            MakeKeyData();
110
79.3k
            memcpy(keydata->data(), (unsigned char*)&pbegin[0], keydata->size());
111
79.3k
            fCompressed = fCompressedIn;
112
79.3k
        } else {
113
0
            ClearKeyData();
114
0
        }
115
79.3k
    }
Unexecuted instantiation: void CKey::Set<std::__1::__wrap_iter<unsigned char const*>>(std::__1::__wrap_iter<unsigned char const*>, std::__1::__wrap_iter<unsigned char const*>, bool)
Unexecuted instantiation: void CKey::Set<std::byte const*>(std::byte const*, std::byte const*, bool)
Unexecuted instantiation: void CKey::Set<unsigned char*>(unsigned char*, unsigned char*, bool)
Unexecuted instantiation: void CKey::Set<std::byte*>(std::byte*, std::byte*, bool)
Unexecuted instantiation: void CKey::Set<std::__1::__wrap_iter<unsigned char*>>(std::__1::__wrap_iter<unsigned char*>, std::__1::__wrap_iter<unsigned char*>, bool)
void CKey::Set<unsigned char const*>(unsigned char const*, unsigned char const*, bool)
Line
Count
Source
105
79.3k
    {
106
79.3k
        if (size_t(pend - pbegin) != std::tuple_size_v<KeyType>) {
107
0
            ClearKeyData();
108
79.3k
        } else if (Check(UCharCast(&pbegin[0]))) {
109
79.3k
            MakeKeyData();
110
79.3k
            memcpy(keydata->data(), (unsigned char*)&pbegin[0], keydata->size());
111
79.3k
            fCompressed = fCompressedIn;
112
79.3k
        } else {
113
0
            ClearKeyData();
114
0
        }
115
79.3k
    }
116
117
    //! Simple read-only vector-like interface.
118
0
    unsigned int size() const { return keydata ? keydata->size() : 0; }
119
237k
    const std::byte* data() const { return keydata ? reinterpret_cast<const std::byte*>(keydata->data()) : 
nullptr0
; }
120
237k
    const std::byte* begin() const { return data(); }
121
0
    const std::byte* end() const { return data() + size(); }
122
123
    //! Check whether this private key is valid.
124
158k
    bool IsValid() const { return !!keydata; }
125
126
    //! Check whether the public key corresponding to this private key is (to be) compressed.
127
0
    bool IsCompressed() const { return fCompressed; }
128
129
    //! Generate a new private key using a cryptographic PRNG.
130
    void MakeNewKey(bool fCompressed);
131
132
    /**
133
     * Convert the private key to a CPrivKey (serialized OpenSSL private key data).
134
     * This is expensive.
135
     */
136
    CPrivKey GetPrivKey() const;
137
138
    /**
139
     * Compute the public key from a private key.
140
     * This is expensive.
141
     */
142
    CPubKey GetPubKey() const;
143
144
    /**
145
     * Create a DER-serialized signature.
146
     * The test_case parameter tweaks the deterministic nonce.
147
     */
148
    bool Sign(const uint256& hash, std::vector<unsigned char>& vchSig, bool grind = true, uint32_t test_case = 0) const;
149
150
    /**
151
     * Create a compact signature (65 bytes), which allows reconstructing the used public key.
152
     * The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
153
     * The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
154
     *                  0x1D = second key with even y, 0x1E = second key with odd y,
155
     *                  add 0x04 for compressed keys.
156
     */
157
    bool SignCompact(const uint256& hash, std::vector<unsigned char>& vchSig) const;
158
159
    /**
160
     * Create a BIP-340 Schnorr signature, for the xonly-pubkey corresponding to *this,
161
     * optionally tweaked by *merkle_root. Additional nonce entropy is provided through
162
     * aux.
163
     *
164
     * merkle_root is used to optionally perform tweaking of the private key, as specified
165
     * in BIP341:
166
     * - If merkle_root == nullptr: no tweaking is done, sign with key directly (this is
167
     *                              used for signatures in BIP342 script).
168
     * - If merkle_root->IsNull():  sign with key + H_TapTweak(pubkey) (this is used for
169
     *                              key path spending when no scripts are present).
170
     * - Otherwise:                 sign with key + H_TapTweak(pubkey || *merkle_root)
171
     *                              (this is used for key path spending, with specific
172
     *                              Merkle root of the script tree).
173
     */
174
    bool SignSchnorr(const uint256& hash, std::span<unsigned char> sig, const uint256* merkle_root, const uint256& aux) const;
175
176
    //! Derive BIP32 child key.
177
    [[nodiscard]] bool Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const;
178
179
    /**
180
     * Verify thoroughly whether a private key and a public key match.
181
     * This is done using a different mechanism than just regenerating it.
182
     */
183
    bool VerifyPubKey(const CPubKey& vchPubKey) const;
184
185
    //! Load private key and check that public key matches.
186
    bool Load(const CPrivKey& privkey, const CPubKey& vchPubKey, bool fSkipCheck);
187
188
    /** Create an ellswift-encoded public key for this key, with specified entropy.
189
     *
190
     *  entropy must be a 32-byte span with additional entropy to use in the encoding. Every
191
     *  public key has ~2^256 different encodings, and this function will deterministically pick
192
     *  one of them, based on entropy. Note that even without truly random entropy, the
193
     *  resulting encoding will be indistinguishable from uniform to any adversary who does not
194
     *  know the private key (because the private key itself is always used as entropy as well).
195
     */
196
    EllSwiftPubKey EllSwiftCreate(std::span<const std::byte> entropy) const;
197
198
    /** Compute a BIP324-style ECDH shared secret.
199
     *
200
     *  - their_ellswift: EllSwiftPubKey that was received from the other side.
201
     *  - our_ellswift: EllSwiftPubKey that was sent to the other side (must have been generated
202
     *                  from *this using EllSwiftCreate()).
203
     *  - initiating: whether we are the initiating party (true) or responding party (false).
204
     */
205
    ECDHSecret ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift,
206
                                       const EllSwiftPubKey& our_ellswift,
207
                                       bool initiating) const;
208
    /** Compute a KeyPair
209
     *
210
     *  Wraps a `secp256k1_keypair` type.
211
     *
212
     *  `merkle_root` is used to optionally perform tweaking of
213
     *  the internal key, as specified in BIP341:
214
     *
215
     *  - If merkle_root == nullptr: no tweaking is done, use the internal key directly (this is
216
     *                               used for signatures in BIP342 script).
217
     *  - If merkle_root->IsNull():  tweak the internal key with H_TapTweak(pubkey) (this is used for
218
     *                               key path spending when no scripts are present).
219
     *  - Otherwise:                 tweak the internal key with H_TapTweak(pubkey || *merkle_root)
220
     *                               (this is used for key path spending with the
221
     *                               Merkle root of the script tree).
222
     */
223
    KeyPair ComputeKeyPair(const uint256* merkle_root) const;
224
225
    std::vector<uint8_t> CreateMuSig2Nonce(MuSig2SecNonce& secnonce, const uint256& sighash, const CPubKey& aggregate_pubkey, const std::vector<CPubKey>& pubkeys);
226
    std::optional<uint256> CreateMuSig2PartialSig(const uint256& hash, const CPubKey& aggregate_pubkey, const std::vector<CPubKey>& pubkeys, const std::map<CPubKey, std::vector<uint8_t>>& pubnonces, MuSig2SecNonce& secnonce, const std::vector<std::pair<uint256, bool>>& tweaks);
227
};
228
229
CKey GenerateRandomKey(bool compressed = true) noexcept;
230
231
struct CExtKey {
232
    unsigned char nDepth;
233
    unsigned char vchFingerprint[4];
234
    unsigned int nChild;
235
    ChainCode chaincode;
236
    CKey key;
237
238
    friend bool operator==(const CExtKey& a, const CExtKey& b)
239
0
    {
240
0
        return a.nDepth == b.nDepth &&
241
0
            memcmp(a.vchFingerprint, b.vchFingerprint, sizeof(vchFingerprint)) == 0 &&
242
0
            a.nChild == b.nChild &&
243
0
            a.chaincode == b.chaincode &&
244
0
            a.key == b.key;
245
0
    }
246
247
79.3k
    CExtKey() = default;
248
0
    CExtKey(const CExtPubKey& xpub, const CKey& key_in) : nDepth(xpub.nDepth), nChild(xpub.nChild), chaincode(xpub.chaincode), key(key_in)
249
0
    {
250
0
        std::copy(xpub.vchFingerprint, xpub.vchFingerprint + sizeof(xpub.vchFingerprint), vchFingerprint);
251
0
    }
252
253
    void Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const;
254
    void Decode(const unsigned char code[BIP32_EXTKEY_SIZE]);
255
    [[nodiscard]] bool Derive(CExtKey& out, unsigned int nChild) const;
256
    CExtPubKey Neuter() const;
257
    void SetSeed(std::span<const std::byte> seed);
258
};
259
260
/** KeyPair
261
 *
262
 *  Wraps a `secp256k1_keypair` type, an opaque data structure for holding a secret and public key.
263
 *  This is intended for BIP340 keys and allows us to easily determine if the secret key needs to
264
 *  be negated by checking the parity of the public key. This class primarily intended for passing
265
 *  secret keys to libsecp256k1 functions expecting a `secp256k1_keypair`. For all other cases,
266
 *  CKey should be preferred.
267
 *
268
 *  A KeyPair can be created from a CKey with an optional merkle_root tweak (per BIP342). See
269
 *  CKey::ComputeKeyPair for more details.
270
 */
271
class KeyPair
272
{
273
public:
274
    KeyPair() noexcept = default;
275
    KeyPair(KeyPair&&) noexcept = default;
276
    KeyPair& operator=(KeyPair&&) noexcept = default;
277
    KeyPair& operator=(const KeyPair& other)
278
0
    {
279
0
        if (this != &other) {
280
0
            if (other.m_keypair) {
281
0
                MakeKeyPairData();
282
0
                *m_keypair = *other.m_keypair;
283
0
            } else {
284
0
                ClearKeyPairData();
285
0
            }
286
0
        }
287
0
        return *this;
288
0
    }
289
290
0
    KeyPair(const KeyPair& other) { *this = other; }
291
292
    friend KeyPair CKey::ComputeKeyPair(const uint256* merkle_root) const;
293
    [[nodiscard]] bool SignSchnorr(const uint256& hash, std::span<unsigned char> sig, const uint256& aux) const;
294
295
    //! Check whether this keypair is valid.
296
0
    bool IsValid() const { return !!m_keypair; }
297
298
private:
299
    KeyPair(const CKey& key, const uint256* merkle_root);
300
301
    using KeyType = std::array<unsigned char, 96>;
302
    secure_unique_ptr<KeyType> m_keypair;
303
304
    void MakeKeyPairData()
305
0
    {
306
0
        if (!m_keypair) m_keypair = make_secure_unique<KeyType>();
307
0
    }
308
309
    void ClearKeyPairData()
310
0
    {
311
0
        m_keypair.reset();
312
0
    }
313
};
314
315
/** Check that required EC support is available at runtime. */
316
bool ECC_InitSanityCheck();
317
318
/**
319
 * RAII class initializing and deinitializing global state for elliptic curve support.
320
 * Only one instance may be initialized at a time.
321
 *
322
 * In the future global ECC state could be removed, and this class could contain
323
 * state and be passed as an argument to ECC key functions.
324
 */
325
class ECC_Context
326
{
327
public:
328
    ECC_Context();
329
    ~ECC_Context();
330
};
331
332
#endif // BITCOIN_KEY_H