Bitcoin Core Fuzz Coverage Report for wallet_tx_can_be_bumped

Coverage Report

Created: 2025-11-19 11:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/Users/brunogarcia/projects/bitcoin-core-dev/src/chain.cpp
Line
Count
Source
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-2022 The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <chain.h>
7
#include <tinyformat.h>
8
#include <util/check.h>
9
10
std::string CBlockIndex::ToString() const
11
0
{
12
0
    return strprintf("CBlockIndex(pprev=%p, nHeight=%d, merkle=%s, hashBlock=%s)",
Line
Count
Source
1172
0
#define strprintf tfm::format
13
0
                     pprev, nHeight, hashMerkleRoot.ToString(), GetBlockHash().ToString());
14
0
}
15
16
void CChain::SetTip(CBlockIndex& block)
17
0
{
18
0
    CBlockIndex* pindex = &block;
19
0
    vChain.resize(pindex->nHeight + 1);
20
0
    while (pindex && vChain[pindex->nHeight] != pindex) {
21
0
        vChain[pindex->nHeight] = pindex;
22
0
        pindex = pindex->pprev;
23
0
    }
24
0
}
25
26
std::vector<uint256> LocatorEntries(const CBlockIndex* index)
27
9.91k
{
28
9.91k
    int step = 1;
29
9.91k
    std::vector<uint256> have;
30
9.91k
    if (index == nullptr) 
return have0
;
31
32
9.91k
    have.reserve(32);
33
9.91k
    while (index) {
34
9.91k
        have.emplace_back(index->GetBlockHash());
35
9.91k
        if (index->nHeight == 0) break;
36
        // Exponentially larger steps back, plus the genesis block.
37
0
        int height = std::max(index->nHeight - step, 0);
38
        // Use skiplist.
39
0
        index = index->GetAncestor(height);
40
0
        if (have.size() > 10) step *= 2;
41
0
    }
42
9.91k
    return have;
43
9.91k
}
44
45
CBlockLocator GetLocator(const CBlockIndex* index)
46
9.91k
{
47
9.91k
    return CBlockLocator{LocatorEntries(index)};
48
9.91k
}
49
50
0
const CBlockIndex *CChain::FindFork(const CBlockIndex *pindex) const {
51
0
    if (pindex == nullptr) {
52
0
        return nullptr;
53
0
    }
54
0
    if (pindex->nHeight > Height())
55
0
        pindex = pindex->GetAncestor(Height());
56
0
    while (pindex && !Contains(pindex))
57
0
        pindex = pindex->pprev;
58
0
    return pindex;
59
0
}
60
61
CBlockIndex* CChain::FindEarliestAtLeast(int64_t nTime, int height) const
62
0
{
63
0
    std::pair<int64_t, int> blockparams = std::make_pair(nTime, height);
64
0
    std::vector<CBlockIndex*>::const_iterator lower = std::lower_bound(vChain.begin(), vChain.end(), blockparams,
65
0
        [](CBlockIndex* pBlock, const std::pair<int64_t, int>& blockparams) -> bool { return pBlock->GetBlockTimeMax() < blockparams.first || pBlock->nHeight < blockparams.second; });
66
0
    return (lower == vChain.end() ? nullptr : *lower);
67
0
}
68
69
/** Turn the lowest '1' bit in the binary representation of a number into a '0'. */
70
0
int static inline InvertLowestOne(int n) { return n & (n - 1); }
71
72
/** Compute what height to jump back to with the CBlockIndex::pskip pointer. */
73
0
int static inline GetSkipHeight(int height) {
74
0
    if (height < 2)
75
0
        return 0;
76
77
    // Determine which height to jump back to. Any number strictly lower than height is acceptable,
78
    // but the following expression seems to perform well in simulations (max 110 steps to go back
79
    // up to 2**18 blocks).
80
0
    return (height & 1) ? InvertLowestOne(InvertLowestOne(height - 1)) + 1 : InvertLowestOne(height);
81
0
}
82
83
const CBlockIndex* CBlockIndex::GetAncestor(int height) const
84
0
{
85
0
    if (height > nHeight || height < 0) {
86
0
        return nullptr;
87
0
    }
88
89
0
    const CBlockIndex* pindexWalk = this;
90
0
    int heightWalk = nHeight;
91
0
    while (heightWalk > height) {
92
0
        int heightSkip = GetSkipHeight(heightWalk);
93
0
        int heightSkipPrev = GetSkipHeight(heightWalk - 1);
94
0
        if (pindexWalk->pskip != nullptr &&
95
0
            (heightSkip == height ||
96
0
             (heightSkip > height && !(heightSkipPrev < heightSkip - 2 &&
97
0
                                       heightSkipPrev >= height)))) {
98
            // Only follow pskip if pprev->pskip isn't better than pskip->pprev.
99
0
            pindexWalk = pindexWalk->pskip;
100
0
            heightWalk = heightSkip;
101
0
        } else {
102
0
            assert(pindexWalk->pprev);
103
0
            pindexWalk = pindexWalk->pprev;
104
0
            heightWalk--;
105
0
        }
106
0
    }
107
0
    return pindexWalk;
108
0
}
109
110
CBlockIndex* CBlockIndex::GetAncestor(int height)
111
0
{
112
0
    return const_cast<CBlockIndex*>(static_cast<const CBlockIndex*>(this)->GetAncestor(height));
113
0
}
114
115
void CBlockIndex::BuildSkip()
116
0
{
117
0
    if (pprev)
118
0
        pskip = pprev->GetAncestor(GetSkipHeight(nHeight));
119
0
}
120
121
arith_uint256 GetBlockProof(const CBlockIndex& block)
122
0
{
123
0
    arith_uint256 bnTarget;
124
0
    bool fNegative;
125
0
    bool fOverflow;
126
0
    bnTarget.SetCompact(block.nBits, &fNegative, &fOverflow);
127
0
    if (fNegative || fOverflow || bnTarget == 0)
128
0
        return 0;
129
    // We need to compute 2**256 / (bnTarget+1), but we can't represent 2**256
130
    // as it's too large for an arith_uint256. However, as 2**256 is at least as large
131
    // as bnTarget+1, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+1)) + 1,
132
    // or ~bnTarget / (bnTarget+1) + 1.
133
0
    return (~bnTarget / (bnTarget + 1)) + 1;
134
0
}
135
136
int64_t GetBlockProofEquivalentTime(const CBlockIndex& to, const CBlockIndex& from, const CBlockIndex& tip, const Consensus::Params& params)
137
0
{
138
0
    arith_uint256 r;
139
0
    int sign = 1;
140
0
    if (to.nChainWork > from.nChainWork) {
141
0
        r = to.nChainWork - from.nChainWork;
142
0
    } else {
143
0
        r = from.nChainWork - to.nChainWork;
144
0
        sign = -1;
145
0
    }
146
0
    r = r * arith_uint256(params.nPowTargetSpacing) / GetBlockProof(tip);
147
0
    if (r.bits() > 63) {
148
0
        return sign * std::numeric_limits<int64_t>::max();
149
0
    }
150
0
    return sign * int64_t(r.GetLow64());
151
0
}
152
153
/** Find the last common ancestor two blocks have.
154
 *  Both pa and pb must be non-nullptr. */
155
0
const CBlockIndex* LastCommonAncestor(const CBlockIndex* pa, const CBlockIndex* pb) {
156
    // First rewind to the last common height (the forking point cannot be past one of the two).
157
0
    if (pa->nHeight > pb->nHeight) {
158
0
        pa = pa->GetAncestor(pb->nHeight);
159
0
    } else if (pb->nHeight > pa->nHeight) {
160
0
        pb = pb->GetAncestor(pa->nHeight);
161
0
    }
162
0
    while (pa != pb) {
163
        // Jump back until pa and pb have a common "skip" ancestor.
164
0
        while (pa->pskip != pb->pskip) {
165
            // This logic relies on the property that equal-height blocks have equal-height skip
166
            // pointers.
167
0
            Assume(pa->nHeight == pb->nHeight);
Line
Count
Source
125
0
#define Assume(val) inline_assertion_check<false>(val, std::source_location::current(), #val)
168
0
            Assume(pa->pskip->nHeight == pb->pskip->nHeight);
Line
Count
Source
125
0
#define Assume(val) inline_assertion_check<false>(val, std::source_location::current(), #val)
169
0
            pa = pa->pskip;
170
0
            pb = pb->pskip;
171
0
        }
172
        // At this point, pa and pb are different, but have equal pskip. The forking point lies in
173
        // between pa/pb on the one end, and pa->pskip/pb->pskip on the other end.
174
0
        pa = pa->pprev;
175
0
        pb = pb->pprev;
176
0
    }
177
0
    return pa;
178
0
}