Bitcoin Core Fuzz Coverage Report for wallet_tx_can_be_bumped

Coverage Report

Created: 2025-11-19 11:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/Users/brunogarcia/projects/bitcoin-core-dev/src/arith_uint256.h
Line
Count
Source
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-present The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#ifndef BITCOIN_ARITH_UINT256_H
7
#define BITCOIN_ARITH_UINT256_H
8
9
#include <compare>
10
#include <cstdint>
11
#include <cstring>
12
#include <limits>
13
#include <stdexcept>
14
#include <string>
15
16
class uint256;
17
18
class uint_error : public std::runtime_error {
19
public:
20
0
    explicit uint_error(const std::string& str) : std::runtime_error(str) {}
21
};
22
23
/** Template base class for unsigned big integers. */
24
template <unsigned int BITS>
25
class base_uint
26
{
27
protected:
28
    static_assert(BITS / 32 > 0 && BITS % 32 == 0, "Template parameter BITS must be a positive multiple of 32.");
29
    static constexpr int WIDTH = BITS / 32;
30
    /** Big integer represented with 32-bit digits, least-significant first. */
31
    uint32_t pn[WIDTH];
32
33
public:
34
    constexpr base_uint()
35
0
    {
36
0
        for (int i = 0; i < WIDTH; i++)
37
0
            pn[i] = 0;
38
0
    }
Unexecuted instantiation: base_uint<256u>::base_uint()
Unexecuted instantiation: base_uint<6144u>::base_uint()
39
40
    base_uint(const base_uint& b) = default;
41
    base_uint& operator=(const base_uint& b) = default;
42
43
    constexpr base_uint(uint64_t b)
44
0
    {
45
0
        pn[0] = (unsigned int)b;
46
0
        pn[1] = (unsigned int)(b >> 32);
47
0
        for (int i = 2; i < WIDTH; i++)
48
0
            pn[i] = 0;
49
0
    }
Unexecuted instantiation: base_uint<256u>::base_uint(unsigned long long)
Unexecuted instantiation: base_uint<6144u>::base_uint(unsigned long long)
50
51
    base_uint operator~() const
52
0
    {
53
0
        base_uint ret;
54
0
        for (int i = 0; i < WIDTH; i++)
55
0
            ret.pn[i] = ~pn[i];
56
0
        return ret;
57
0
    }
58
59
    base_uint operator-() const
60
0
    {
61
0
        base_uint ret;
62
0
        for (int i = 0; i < WIDTH; i++)
63
0
            ret.pn[i] = ~pn[i];
64
0
        ++ret;
65
0
        return ret;
66
0
    }
Unexecuted instantiation: base_uint<256u>::operator-() const
Unexecuted instantiation: base_uint<6144u>::operator-() const
67
68
    double getdouble() const;
69
70
    base_uint& operator=(uint64_t b)
71
0
    {
72
0
        pn[0] = (unsigned int)b;
73
0
        pn[1] = (unsigned int)(b >> 32);
74
0
        for (int i = 2; i < WIDTH; i++)
75
0
            pn[i] = 0;
76
0
        return *this;
77
0
    }
Unexecuted instantiation: base_uint<256u>::operator=(unsigned long long)
Unexecuted instantiation: base_uint<6144u>::operator=(unsigned long long)
78
79
    base_uint& operator^=(const base_uint& b)
80
0
    {
81
0
        for (int i = 0; i < WIDTH; i++)
82
0
            pn[i] ^= b.pn[i];
83
0
        return *this;
84
0
    }
85
86
    base_uint& operator&=(const base_uint& b)
87
0
    {
88
0
        for (int i = 0; i < WIDTH; i++)
89
0
            pn[i] &= b.pn[i];
90
0
        return *this;
91
0
    }
92
93
    base_uint& operator|=(const base_uint& b)
94
0
    {
95
0
        for (int i = 0; i < WIDTH; i++)
96
0
            pn[i] |= b.pn[i];
97
0
        return *this;
98
0
    }
99
100
    base_uint& operator^=(uint64_t b)
101
0
    {
102
0
        pn[0] ^= (unsigned int)b;
103
0
        pn[1] ^= (unsigned int)(b >> 32);
104
0
        return *this;
105
0
    }
106
107
    base_uint& operator|=(uint64_t b)
108
0
    {
109
0
        pn[0] |= (unsigned int)b;
110
0
        pn[1] |= (unsigned int)(b >> 32);
111
0
        return *this;
112
0
    }
113
114
    base_uint& operator<<=(unsigned int shift);
115
    base_uint& operator>>=(unsigned int shift);
116
117
    base_uint& operator+=(const base_uint& b)
118
0
    {
119
0
        uint64_t carry = 0;
120
0
        for (int i = 0; i < WIDTH; i++)
121
0
        {
122
0
            uint64_t n = carry + pn[i] + b.pn[i];
123
0
            pn[i] = n & 0xffffffff;
124
0
            carry = n >> 32;
125
0
        }
126
0
        return *this;
127
0
    }
Unexecuted instantiation: base_uint<256u>::operator+=(base_uint<256u> const&)
Unexecuted instantiation: base_uint<6144u>::operator+=(base_uint<6144u> const&)
128
129
    base_uint& operator-=(const base_uint& b)
130
0
    {
131
0
        *this += -b;
132
0
        return *this;
133
0
    }
Unexecuted instantiation: base_uint<256u>::operator-=(base_uint<256u> const&)
Unexecuted instantiation: base_uint<6144u>::operator-=(base_uint<6144u> const&)
134
135
    base_uint& operator+=(uint64_t b64)
136
0
    {
137
0
        base_uint b;
138
0
        b = b64;
139
0
        *this += b;
140
0
        return *this;
141
0
    }
142
143
    base_uint& operator-=(uint64_t b64)
144
0
    {
145
0
        base_uint b;
146
0
        b = b64;
147
0
        *this += -b;
148
0
        return *this;
149
0
    }
150
151
    base_uint& operator*=(uint32_t b32);
152
    base_uint& operator*=(const base_uint& b);
153
    base_uint& operator/=(const base_uint& b);
154
155
    base_uint& operator++()
156
0
    {
157
        // prefix operator
158
0
        int i = 0;
159
0
        while (i < WIDTH && ++pn[i] == 0)
160
0
            i++;
161
0
        return *this;
162
0
    }
Unexecuted instantiation: base_uint<256u>::operator++()
Unexecuted instantiation: base_uint<6144u>::operator++()
163
164
    base_uint operator++(int)
165
0
    {
166
        // postfix operator
167
0
        const base_uint ret = *this;
168
0
        ++(*this);
169
0
        return ret;
170
0
    }
171
172
    base_uint& operator--()
173
0
    {
174
        // prefix operator
175
0
        int i = 0;
176
0
        while (i < WIDTH && --pn[i] == std::numeric_limits<uint32_t>::max())
177
0
            i++;
178
0
        return *this;
179
0
    }
180
181
    base_uint operator--(int)
182
0
    {
183
        // postfix operator
184
0
        const base_uint ret = *this;
185
0
        --(*this);
186
0
        return ret;
187
0
    }
188
189
    /** Numeric ordering (unlike \ref base_blob::Compare) */
190
    int CompareTo(const base_uint& b) const;
191
    bool EqualTo(uint64_t b) const;
192
193
0
    friend inline base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; }
194
0
    friend inline base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; }
195
0
    friend inline base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; }
196
0
    friend inline base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; }
197
    friend inline base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; }
198
    friend inline base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; }
199
    friend inline base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; }
200
0
    friend inline base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; }
201
0
    friend inline base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; }
202
0
    friend inline base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; }
203
0
    friend inline bool operator==(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) == 0; }
Unexecuted instantiation: operator==(base_uint<256u> const&, base_uint<256u> const&)
Unexecuted instantiation: operator==(base_uint<6144u> const&, base_uint<6144u> const&)
204
0
    friend inline std::strong_ordering operator<=>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <=> 0; }
Unexecuted instantiation: operator<=>(base_uint<256u> const&, base_uint<256u> const&)
Unexecuted instantiation: operator<=>(base_uint<6144u> const&, base_uint<6144u> const&)
205
0
    friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); }
206
207
    /** Hex encoding of the number (with the most significant digits first). */
208
    std::string GetHex() const;
209
    std::string ToString() const;
210
211
    unsigned int size() const
212
0
    {
213
0
        return sizeof(pn);
214
0
    }
215
216
    /**
217
     * Returns the position of the highest bit set plus one, or zero if the
218
     * value is zero.
219
     */
220
    unsigned int bits() const;
221
222
    uint64_t GetLow64() const
223
0
    {
224
0
        static_assert(WIDTH >= 2, "Assertion WIDTH >= 2 failed (WIDTH = BITS / 32). BITS is a template parameter.");
225
0
        return pn[0] | (uint64_t)pn[1] << 32;
226
0
    }
227
};
228
229
/** 256-bit unsigned big integer. */
230
class arith_uint256 : public base_uint<256>
231
{
232
public:
233
0
    constexpr arith_uint256() = default;
234
0
    constexpr arith_uint256(const base_uint& b) : base_uint(b) {}
235
0
    constexpr arith_uint256(uint64_t b) : base_uint(b) {}
236
237
    /**
238
     * The "compact" format is a representation of a whole
239
     * number N using an unsigned 32bit number similar to a
240
     * floating point format.
241
     * The most significant 8 bits are the unsigned exponent of base 256.
242
     * This exponent can be thought of as "number of bytes of N".
243
     * The lower 23 bits are the mantissa.
244
     * Bit number 24 (0x800000) represents the sign of N.
245
     * N = (-1^sign) * mantissa * 256^(exponent-3)
246
     *
247
     * Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
248
     * MPI uses the most significant bit of the first byte as sign.
249
     * Thus 0x1234560000 is compact (0x05123456)
250
     * and  0xc0de000000 is compact (0x0600c0de)
251
     *
252
     * Bitcoin only uses this "compact" format for encoding difficulty
253
     * targets, which are unsigned 256bit quantities.  Thus, all the
254
     * complexities of the sign bit and using base 256 are probably an
255
     * implementation accident.
256
     */
257
    arith_uint256& SetCompact(uint32_t nCompact, bool *pfNegative = nullptr, bool *pfOverflow = nullptr);
258
    uint32_t GetCompact(bool fNegative = false) const;
259
260
    friend uint256 ArithToUint256(const arith_uint256 &);
261
    friend arith_uint256 UintToArith256(const uint256 &);
262
};
263
264
// Keeping the trivially copyable property is beneficial for performance
265
static_assert(std::is_trivially_copyable_v<arith_uint256>);
266
267
uint256 ArithToUint256(const arith_uint256 &);
268
arith_uint256 UintToArith256(const uint256 &);
269
270
extern template class base_uint<256>;
271
272
#endif // BITCOIN_ARITH_UINT256_H